
How to blackbox testHow to blackbox test

almost anythingalmost anything

Aviram Jenik, CEO

My goal here today

Recipe for finding unknown
security holes

My goal here today

Recipe for finding unknown
security holes

On every platform

My goal here today

Recipe for finding unknown
security holes

On every platform

For every programming lang.

My goal here today

Recipe for finding unknown
security holes

On every platform

For every programming lang.

Any product type

Blackbox Testing

Is blackbox testing really that powerful?

This week's major security holes on SecuriTeam.com:

 F5 Denial of Service

 Mozilla Firefox disclosure vulnerability

 Cisco TCP connection DoS

 Adobe Flash Player code execution

What do they have in common?

 4 different products

 Different attack vectors

 All critical vulnerabilities

 All require patch

 Unpatched systems will be extremely vulnerable

 All could have been discovered during development

 None requires special expertise to exploit (hence, relatively
straightforward to discover)

 (probably) found via fuzzing – e.g. blackbox testing

File input (XLS)

Network (RPC)

Physical (802.11 frame)

Web (XSS)

Network (LDAP)

Blackbox testing in the real world

This was my week:
File input (XLS)

Network (RPC)

Physical (802.11 frame)

Web (XSS)

Network (LDAP)Monday Tuesday Wednesday

Bluetooth attack
(unpaired) on a car
hands-free system

Malformed WAV file
vulnerability on a
car entertainment
system

CAN BUS (OBD-II)
request caused full
lock-up of the car
(required towing)

Something about me

File input (XLS)

Network (RPC)

Physical (802.11 frame)

Web (XSS)

Network (LDAP)

My goal here today

Finding those vulnerabilities
automatically (machine-
style)

About Beyond Security

We specialize in
vulnerabilities

About Beyond Security

We specialize in
vulnerabilities

and develop tools to find
them

Our Technology

AVDS beSTORM SecuriTeam.com

Our Technology - AVDS

AVDS
Automated Vulnerability
Detection System ("VA")

Know that your network is Safe

AVDS beSTORM SecuriTeam.com

Known Vulnerabilities

AVDS
(Automated Vulnerability Detection

System)

• Everything that talks ‘IP”.

• Agent-less, providing a real

‘hacker’ view

• Scalable from 64 to many

hundreds of thousands of systems

• Very powerful management and

automation tools

AVDS beSTORM SecuriTeam.com

Our Vision with AVDSOur Vision with AVDS
 Scanning 1-4/year is just not enough any more

 Vulnerability Management is an active process

 scans must be done on a regular basis:
 New vulnerabilities are discovered every day

 The network is dynamic (new ports, services, hosts)

 Needs to be a dedicated, robust platform (similar to

Firewall/Proxy/IPS)

The objective of Vulnerability Management is to
KNOW, at any given time, what the risks are in
your infrastructure so that they can be managed.

Our Technology - SecuriTeam

SecuriTeam.com
Security portal / Knowledge Source

SecuriTeam.com AVDS beSTORM

Information

SecuriTeam.com
Security portal / information source

• All information/mailing lists are

free

• Global gathering place for IT

Security Professionals and Hackers

• One of the leading portals

worldwide on vulnerabilities and

exploits

SecuriTeam.com AVDS beSTORM

Among our customers

How are cyber attacks done?

“The reality is that the most important issues are the vulnerabilities
and the techniques used to exploit them, not the country that
appears to be the source of the attack”

- Gartner

How was the recent cyber-incident done? Most likely by a
vulnerability that is easy to uncover and patch

The theory behind Blackbox testing

The most secure system

Is completely useless

Inputs are the problem

Logic
User input Output

For the programmer

Input Output

Inputs are the problem

Logic
Unanticipa

ted input

Output

For the attacker

Unintended consequence (=attack)

Unexpected
Input

Output

Unexpected
consequence
(Attack)

Turing machine

The basic software model

What is blackbox testing?

 Testing by attacking the inputs and observing output/behavior

 Does not use the source code

 Does not assume knowledge about the system

Doesn't QA solve this?

QA: Testing if a good input => good result

Fuzzing: Testing if a malformed input => good result for the
attacker!

What is blackbox testing?

 Testing by attacking the inputs and observing output/behavior

 Does not use the source code

 Does not assume knowledge about the system

The system is a black box

What is blackbox testing?

 Testing by attacking the inputs and observing output/behavior

 Does not use the source code

 Does not assume knowledge about the system

The system is a black box

This is how almost all security
holes are discovered today

Exhaustive blackbox testing

The theory: Generate all possible combinations

Exhaustive blackbox testing

000...000

000...001

000...010

111...111

.

.

.

.

AAA

Exhaustive blackbox testing

All possible inputs ==> All possible outputs

Exhaustive blackbox testing

All possible outputs ==> All possible security vulnerabilities will be
triggered

Exhaustive blackbox testing

The drawback: 1KB request = 21000=10300 combinations

Shortcut #1: Protocol coverage

Example

Blackbox Testing French people

Example

Blackbox Testing French people

Shortcut #1: Protocol coverage

Step 1: Generate all possible valid protocol requests (by crawling
through the BNF description of the protocol)

Shortcut #1: Protocol coverage

Step 1: Generate all possible valid protocol requests (by crawling
through the BNF description of the protocol)

==> Guaranteed to cover the entire protocol

Shortcut #1: Protocol coverage

Step 1: Generate all possible valid protocol requests (by crawling
through the BNF description of the protocol)

==> Guaranteed to cover the entire protocol

Step 2: “Fuzz” (=attack) each field in each combination

Shortcut #1: Protocol coverage

Step 1: Generate all possible valid protocol requests (by crawling
through the BNF description of the protocol)

==> Guaranteed to cover the entire protocol

Step 2: “Fuzz” (=attack) each field in each combination

Attacks:

- Buffer overflow: AAAA...AA

- Format string: %n

- Null character: 0x00

- XML attacks: < and >

- Space

- Various encodings

Shortcut #2: Scaling quickly

Problem: Buffer overflow testing requires many combinations:

Shortcut #2: Scaling quickly

Problem: Buffer overflow testing requires many combinations:

USER AAAAAAA...A (n times)

What is ‘n’?

Shortcut #2: Scaling quickly

Problem: Buffer overflow testing requires many combinations:

USER AAAAAAA...A (n times)

What is ‘n’?

Naive Solution: Test everything.

Shortcut #2: Scaling quickly

Problem: Buffer overflow testing requires many combinations:

USER AAAAAAA...A (n times)

What is ‘n’?

Naive Solution: Test everything.

USER A

USER AA

USER AAA

...

Shortcut #2: Scaling quickly

Problem: Buffer overflow testing requires many combinations:

USER AAAAAAA...A (n times)

What is ‘n’?

Naive Solution: Test everything.

USER A

USER AA

USER AAA

...

“n” combinations

Shortcut #2: Scaling quickly

Problem: Buffer overflow testing requires many combinations:

USER AAAAAAA...A (n times)

What is ‘n’?

Smarter option: Scale quickly 2n

USER A (20)

USER AA (21)

USER AAAA (22)

USER AAAAAAAA (23)

log
2
(n) combinations

Shortcut #2: Scaling quickly

Smarter solution can test buffers from 1 byte to 64KB in 16 steps
(naïve method takes 65,535 steps)

Still covers small buffer sizes (2, 4, 8)

Covers medium buffer sizes (1024, 2048)

And covers large buffers (32,000 and 64,000)

Smart Fuzzing

Conclusion: It’s possible to do an ‘exhaustive’ testing while taking a
few shortcuts to reduce the combination count without reducing
quality

How to blackbox almost everything

Step 1: map all your inputs – in production

 File inputs

 Network

– IP

– Wireless?

– RFID?
 Library calls

 Command line parameters

Why file input can be especially
dangerous

“preview” - ANI attack

Why file input can be especially
dangerous

“preview” - ANI attack

Who determines risk?

Not you!

Who determines risk?

Attackers attack what's easy and not where you ask them

How to blackbox almost everything

 Step 2: determine your “protocols”

Protocols

 Network: your RFC (or spec-based) protocol

 File: accepted file formats

 Library: DLL/ActiveX Interface

How to blackbox almost everything

 Step 3: Start testing

Ingredients

1. Test Module description

2. Generator

3. Monitor

Test Module

 Something that can describe “many” “different” sessions
(=attacks)

 Protocol coverage is key

Example: beSTORM BSP file format

<SC Name=”ICAP Request”>
 <SE Name=”ICAP Method”>
 <S Name=”ICAP Method Enumerating”>
 <E Name=”ICAP Methods”>
 <C Name=”REQMOD Method” ASCIIValue=”REQMOD” />
 <C Name=”OPTIONS Method” ASCIIValue=”OPTIONS” />
 </E>
 </S>
 <S Name=”ICAP Method Overflow”>
 <B Name=”ICAP Method Overflowing” ASCIIValue=”RESPMOD” />
 </S>
 </SE>
 <S Name=”Request Line”>
 <C Name=”Space” ASCIIValue=” “ />
 <B Name=”icap Prefix” ASCIIValue=”icap” />
 <C Name=”ColonSlashes” ASCIIValue=”://“ />
 <B Name=”Address” ASCIIValue=”10.50.10.71“ />
 </S>
</SC>

Example: beSTORM BSP for file
fuzzing

<M Name="TGA" >
 <P Name="TGA Protocol" >
 <SP Name="Writer" Library="File Utils.dll"

Procedure="Write">
 <S Name="Path" > <VB Name="Whatever" Description="Path to store

files" NoDefaultTypes="1" ASCIIValue="c:\\temp" /> </S>

 <S Name="Directory Splitter" >
 <VB Name="Whatever" Description="Directory Splitter

size" NoDefaultTypes="1" ASCIIValue="2" />
 </S>
 <S Name="Extension" >
 <VB Name="Whatever" Description="Extension"

NoDefaultTypes="1" ASCIIValue="tga" />
 </S>
 <SC Name="Data" >
 <S Name="Color-mapped images" >
 <L Name="Identsize" ConditionedName="Image

Identification Field" Size="1" />
 <B Name="Colour Map Type" Default="0x00"

MaxBytes="1" />
 <B Name="Image Type Code" Default="0x02"

MaxBytes="1" />
 <B Name="Color Map Origin" Default="0x00,0x00"

Generator

 Something that can take the module description and send it to the
program:

– Over the network

– By creating a file

– By invoking a DLL function

“Attack Vector”

Monitor

 Possibly the most important component

 So you're generating millions of attacks:
but how do you know you succeeded?

Monitoring

Monitor for:

 Memory exceptions (“first chance exceptions”)

 Program stops responding

 Errors in Logs (via regex)

 Connect the monitor with the generator to correlate

Easy to use and extend

 Windbg

 gdb

Key factors

 Automation

 Re-creating the attacks

 Ensuring protocol coverage (not code coverage!)

Report Sample

Thank you!

Questions?

aviram@beyondsecurity.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

